Argonne°

NATIONAL LABORATORY

MOAB (& friends)

Vijay Mahadevan
Mathematics & Computer Science Division
Argonne National Laboratory

S

‘ :'{‘:»_\ U.S. DEPARTMENT OF
@, ENERGY

Outline

®" |ntroduction: why geometry & mesh components?

= |TAPS: common interfaces for accessing geometry, mesh components
= Mesh-Oriented datABase (MOAB)

= Lasso

= Conclusions

N
Geometry, Mesh, Simulation Data

Spatial domain model the starting point for most PDE-based simulation

Discrete domain FEA
(mesh)

VONMISES
0.00E+3

Continuous domain
(geometry)

25.00E+3

< |] S0.00E+3
A ®=8,9206+0
\ \ *¥= 4531643

TIME 10.00

F

Sometimes geometric details are important, sometimes not
MPP-enabled resolution should resolve geometric features (where possible & useful?)

— The more details you resolve, the harder it is to generate the mesh
Large-code architecture often organized around handling of the spatial domain

(mesh) and fine-grained data on the mesh (fields)

Code Frameworks

For general-purpose codes, 2 common implementation approaches

— “Top-down”, “large-F Framework”

— “Bottom-up”, “small-f framework”

Large-F Framework

Framework defines datastructures for representing mesh, solution data, etc.

Physics is re-implemented in that framework
+ Simpler to arrive at working code given equations to solve

Difficult to port large codes into

Examples:

CHOMBO (LBNL), Sierra (SNL), MOOSE (INL), Trilinos? (SNL)

Small-f framework

Distinct components defined along functional lines

Individual components can be used w/o other components

Applications composed from many of these components
+ Get just what you need, no more

Assembly from bottom-up is more work

Examples:

ITAPS (mesh, geometry, relations), PETSc

ITAPS Interfaces

ITAPS promotes interoperability in both directions...
— Vertical: put together components into higher-level applications

— Horizontal: substitute one component for another providing similar capability

ITAPS defines interfaces (APIs) by function:
— iGeom: Geometric models (CAD)
— iMesh: Mesh
— iRel: Relations

ANL implementations: CGM, MOAB, Lasso
SciDAC3: ITAPS + TOPS + APDEC — (lots of funding) = FASTMath

iGeom/CGM

ITAPS Interface Design

appl.f77 app2.f90 app3.CC app4.c app4.py
iMesh (C) PYTAPS
implA.CC implB.c 1mp1C £77

= C-based interface, but designed to be callable directly from Fortran and C++
— Good portability, performance
— Maintenance easier

— iGeom, iRel too
= Quick startup for new users
= Considering language-based wrappers for FASTMath

ITAPS Data Model

= Entities
— Vertex, Edge, Tri, Quad, (Pentagon?), (Hexagon?), Polygon, Tet, Pyramid, Prism, Knife,
Hex, Polyhedron

= Sets (collections of entities & sets, parent/child links)
— BC groups, materials, proc partitions, kdtree nodes, ...

= Tags (annotation of data on other 3)
— Fine-grained (entities): vertex-based temperature, element-based heat generation rate
— Coarse-grained (sets, interface): BC type, proc rank, provenance

= |nterface (OOP, owns data)

v QVDual

File Help Window Display

Actor‘
B Sheet 3
B Sheet 4
B Sheet 5
& Sheet 6 Geometric model
B Sheet 7
& Sheet § topology
B Sheet9
& Volume 1 A
p- Surface 1 <
.. Surface 10
Parallel Partition T eegver Vertex-based
Curve 8 displacements
- Surface 11
6 p- Surface 12 7

Mesh-Oriented datABase (MOAB)

Library for representing, manipulating structured, unstructured mesh models

Supported mesh types:
— FE zoo (vertices, edges, tri, quad, tet, pyramid, wedge, knife, hex)
— Polygons/polyhedra
— Structured mesh

= Optimized for memory usage first, speed second
= |mplemented in C++, but uses array-based storage model

— Avoids C++ object-based allocation/deallocation

— Allows access in contiguous arrays of data
= Mostly an ITAPS-like data model

— Entity, set, tag, interface
= Mesh I/O from/to various formats

— HDF5 (custom), vtk, CCMIO (Star CD/CCM+), Abaqus, CGM, Exodus
= Main parts:

— Core representation

— Tool classes (skinner, kdtree, OBBtree, ParallelComm, ...)

— Tools (mbsize, mbconvert, mbzoltan, mbcoupler, ...)

MOAB Parallel Model

Each proc has one MOAB instance, which appears locally as a serial mesh
e All serial MOAB function calls available locally
Parallel model based on element-based partition
* Each element assigned to exactly one part, with vertices shared between parts
e Arbitrary number of layers of ghost elements
Supported parallel mesh constructs:
* For each shared entity, every sharing proc knows all other sharing procs & handles on those

* Sharing data stored as either single int/handle (shared with 1 other proc) or mult sharing
procs/handles

* Ghost/owned status also stored
e Stored in 1-byte ‘pstatus’ bitmask tag

Parallel model usually initialized by loading from some decomposition in file
* Can be any subset structure that’s a “covering” (each entity in exactly 1 subset)
* Material set, geometric volume, or Zoltan-generated partitioning

Single-file parallel read/write using parallel HDF5

All parallel functionality usually accessed through ParallelComm class

MOAB Entity Storage

Entity Handle: Range:
Unsigned long type -Container of
Bitmask - handles | sl-el | | s2-e2
i i e Constant-size if
*Sorts by dimension, i 5. 60-bit ID .
type type contiguous handles
EntitySequences: Cache most recently
«Represent used portions of handle space E%?ﬁsgzguence
-Have pointer to SequenceData y
.Have start and end handle values 4
<Arranged in binary tree by start handle |
Typically one
| EntitySequence for an
entire SequenceData
SequenceData: I | A
-Represent allocated Connectivity array
portions of handle space Dense tag #1

.Have start and end handle | Dense tag #2
.Coordinates or Connectivity
.Dense Tag Data

A

A 4
v

é 10

MOAB Parallel 170

MOAB supports various mesh formats used for FE data
— Exodusll, vtk, Abaqus, Star-CCM+
Native storage format is HDF5-based
— Need a format that can store the full data model representable in MOAB (sets, tags)
Need to support parallel I/O on large #s of processors
Most other efforts implement parallel I/O by splitting up the mesh into several or
many files and reading each on a subset of processors
— In our approach, read/write from/to single file
Read:
— Read partition sets, then elements, then vertices, then other sets
— Resolve shared vertices on inter-processor boundaries
— If desired, exchange layer(s) of ghost cells with neighbor processors
Write:
— Negotiate file id space, shared sets (based on tags)
— Concurrent write of vertices, elements, sets

11

MOAB Parallel 1/0 o e

10000

--64m tet (read)
<64m tet (write)

-@ 32m hex (read)
& 32m hex (write)

= Data taken on Intrepid (IBM BG/P) 1000 g

100

time (sec)

= Read/write for 32m hex, 64m tet elems
— Nowhere near ideal I/0 bandwidth
— Absolute time tolerable in most cases

— Drastic tet time improvement after)
. ey 16 160 1600 16000
reordering by partition soroc
e Fewer small fragments of HDF5 datasets

10

Strong Scaling (32m hexes)
1000

= Read/resolve/ghost times
— Read times about constant
— Resolve, ghost time scaling close to linear

100

10

time (sec)

0.1
16 160 1600 16000

#proc

_
6_ 12

MOAB Parallel I/0: Weak Scaling

Weak Scaling (2k elements/proc)

140 -*-tet read
& hex read

120
100
80

60

seconds

40

20

0 2000 4000 6000 8000 10000 12000 14000 16000
#proc

_
Q_ "

Resolving Interface Mesh

= Start: local mesh, with global ids on vertices

* Find: vertices & other entities shared by other procs; for each shared entity, need
remote processor(s), remote entity handle(s)
= Solvein 2 stages:
— Shared vertices (using TL.gs_init on global ids)
— Shared edges/faces (based on connectivity, after remote vertices known)

14

Exchanging Ghost Entities

= |dentify ghosts & destinations based on interface shared entities

= After sending ghosts, receive return message with remote handles

0/v6,1/v2,2/? /
@ g v6 , J v6

J/ 0/’7 1/v2,2/6

P2

s) v1, e1 — local handles 1/v1, 2/v3, ... - sharing list, proc/handle

@ Send entities, sharing lists,
extra processors

@ Return sharing info, including
to extra processors

6 Gotchas:

1.

Sending new vertices and new entities
that use them in same message
(reference as negative handle = index in
message’ s new entity list)

Don’ t know destination handle of all
(eventual) sharing procs (store as 0
until known)

Ghost exchange might introduce new
sharing procs (send extra sharing
procs in 15t message)

Might get same new entity from multiple
other procs (store list on receiving
proc, indexed by owner handle)

Need to fill in missing remote handle
data

Sending proc doesn’ t know how to
reference new entity for remote handle
update (mark using negative proc
handle)

15

Read Performance

100

90 B tags
) @ sets
= Read consists of several steps 80 . @ coords
O Lower-d
— Read header 70 ents
. Bel
— Read partition sets _— Bromor
. 5 50
— Read element connectivity =
40
— Read vertex coords "
— Read/process lower-dimensional entities

20
— Read/process other sets 10 .
— Read tags 0l E
. . . 32mtet 64mtet
= Tried removing geometric topology sets, lowel uuiiciisiviiun citvucs 1o uutuoct
— On 64 procs (fusion), reduced read time by almost 90%!
= Needtotry 2 options:
— Remove that data, benchmark on larger proc counts

— Include complete information in partition sets, benchmark

16

Connecting Physics Modules

= Nek: parallel, input = Denovo: serial, input
— OECD Vettenhall T-Junction benchmark -
6.0*;
et 5.0,
| -
.:W.DOO 1.02

= UNIC: serial, input
— Takeda4 benchmark problem

17

int main(int argc, char *argv[])

Simple Example:
HELLO iMesh (C++)

Simple, typical application which 1) Instantiates iMesh interface, 2) Reads mesh from disk, 3)
Reports # entities of each dimension

#include <iostream> ° Makefile:

#include "iMesh.h"

include ../../iMesh-Defs.inc

HELLOiMesh: HELLOiMesh.o ${IMESH FILES}

// create the Mesh instance $(CXX) $(CXXFLAGS) -o $Q@ HELLOiMesh.o \
char *options = NULL;
. IMESH LIBS
iMesh Instance mesh; 4 - /

int ierr, options len = 0;
iMesh newMesh (options, &mesh, &ierr, -Cpp.o:
options len); ${CXX} -c ${CXXFLAGS} ${IMESH INCLUDES} $<

// load the mesh
iMesh load(mesh, argv[1l], options, é&ierr,
strlen(argv[1l]), options len);

// report the number of elements of each dimension
for (int dim = iBase VERTEX; dim <= iBase REGION; dim++) {

int numd;

iMesh getNumOfType (mesh, 0, dim, &numd, &ierr);

std::cout << "Number of " << dim << "d elements = "

<< numd << std::endl;
}
return true;}
Note: no error checking here for brevity,

but there should be in your code!!! .

Slightly More Complicated Example:
FindConnect (C)

#include <iostream> // iterate through them

: ; ' i = 0; i< ize; i++
4include "iMesh.h" for (int 1 0; 1 . gnts_51ze 1++) |
// get connectivity
- . . iBase EntityHandle *verts; ‘
typedet void® EntityHandle; int verts alloc = 0, verts size;

int main(int argc, char *argv[])

(iMesh getEntAdj (mesh, ents[i], iBase VERTEX,

&verts, &verts alloc, &verts size,
&ierr) ;
// sum number of vertex uses
vert uses += verts size;

free(verts);
} ©,

// now get adjacencies in one big block
iBase EntityHandle *allv;
int *offsets;
int allv _alloc = 0, allv size,
offsets alloc = 0, offsets size;
iMesh getEntArrAdj (mesh, ents, ents size,
iBase VERTEX,
&allv, &allv alloc, &allv size,
goffsets, &offsets alloc, &offsets size,
&ierr);

// create the Mesh instance
iMesh Instance mesh;
int ierr;
iMesh newMesh ("", &mesh, &ierr, O0);

// load the mesh
iMesh load(mesh, 0, "1l25hex.vtk", "",

&ierr, 10, 0);

// get all 3d elements
iMesh EntityHandle *ents;
. int ents alloc = 0, ents size;
iMesh getEntities (mesh, 0, iBase REGION,
iMesh ALL TOPOLOGIES,
&ents, &ents alloc,
gents size, &ierr);

int vert uses = 0; // compare results of two calling methods
if (allv_size != vert uses)
std::cout << "Sizes didn't agree" << std::endl;
else

std::cout << "Sizes did agree" << std::endl;

return true;

° 19

Slightly More Complicated Example:
FindConnect (Fortran)

program findconnect

#include "iMesh f.h"

c decl

arations
iMesh Instance mesh
integer*8 ents

pointer (rpents, ents(0:%*))

integer*8 rpverts, rpallverts, ipoffsets
pointer (rpverts, verts(0:%))

pointer (rpallverts, allverts(0:*))
pointer (ipoffsets, ioffsets(0,*))
integer ilerr, ents alloc, ents size
integer verts alloc, verts size

integer allverts alloc, allverts size
integer offsets alloc, offsets size

c create the Mesh instance

call iMesh newMesh ("MOAB", mesh, ierr)
c load the mesh
call iMesh load (%VAL (mesh), SVAL(O),

1

c get
1

@
1

v

"125hex.vtk",

mww
14

lerr)

all 3d elements

ents alloc = 0

call iMesh getEntities (%VAL (mesh),
VAL (0), %VAL(iBase REGION),
VAL (iMesh ALL TOPOLOGIES),
rpents, ents alloc, ents size,

ierr)

ivert uses = 0

iterate through them;

get

sum

now

=

do 1 = 0, ents size-1
connectivity
verts alloc = 0 .

call iMesh getEntAdj (%$VAL (mesh),

$VAL (ents (1)), %VAL(iBase VERTEX),

rpverts, verts alloc, verts size,
number of vertex uses

vert uses = vert uses + verts size

call free (rpverts) ‘

end do

get adjacencies in one big block

allverts alloc = 0

offsets alloc = 0

call iMesh getEntArrAdj ($VAL (mesh),
$VAL (rpents), %VAL(ents size),
$VAL (iBase VERTEX), rpallverts,
allverts_aTloc, allverts size, ipoffsets,
offsets alloc, offsets size, ierr)

ierr)

c compare results of two calling methods

if (allverts size .ne. vert uses) then
write(*, ' ("Sizes didn''t agree!"™) ')
else
write(*,' ("Sizes did agree!"™) ')
endif
end

20

Nek-MOAB Solution Memory Sharing

= Recent enhancement in MOAB allows applications to get pointer to tag memory
= Allows application to share solution variable memory with MOAB

= MOAB-based output, coupling doesn’ t require any memory duplication

= Changes required in application almost trivial, even for Fortran

c use “cray pointers” to associate array with ptr

pointer (rpxm1, xm1(ix1, lyl, I1z1))

c get iterator over regions (hexes)

call iMesh_initEntArriter(%VAL(imeshh), %VAL(rootset), %VAL(iBase_REGION),
%VAL(iMesh_HEXAHEDRON),%VAL(num_hexes), iter, ierr)

c create dense tag

call iMesh_createTagWithOptions(%VAL(imeshh), "XM1", "moab:TAG_STORAGE_TYPE=DENSE
moab:TAG_DEFAULT_VALUE=0.0", %VAL(Ix1*ly1*Iz1), %VAL(iBase_DOUBLE), tagh, ierr)

c get ptr to tag memory

call iMesh_taglterate(%VAL(imeshh),%VAL(tagh),%VAL(iter),rpxm1,count,ierr)

Parallel Merge Mesh

Current resolution of shared vertices matches vertices based on global id
If you match based on geometric proximity instead, you get a mesh merging tool, which is also
quite useful
RGG: Reactor Geometry (& mesh) Generator
— Generates nuclear reactor core meshes using 2-level lattice (assembly = lattice of fuel rods, core =
lattice of assemblies)
Developed parallel RGG
— Copy/move assemblies in parallel
— Parallel mesh merge
Super-linear speedup results on up to 56 procs (due to thrashing)

iprocs 1 1M hex VHTR 58M hex VHTR

Copy/move 1 10.4 141.8

8 5.8 59.6

16 0.27 1.4

32 0.036 0.12

56 0.004 0.001

Join 1 3.81 70.48 s

8 7.54 28.29 HH

16 6.7 17.62 ,

> 0 > 1/6 VHTR core (58M hex elements)

56 0.25 0.8 -

MOAB-Based Solution Transfer

= Meshes: Each physics type is solved on an independent mesh whose characteristics
(element type, density, etc.) is most appropriate for the physics

= Distribution: Each physics type and mesh is distributed independently across a set of
processors, defined by an MPI communicator for each mesh

OR
JF QY

= Implementation: On a given processor, all meshes are stored in a single iMesh instance,
and that instance communicates with all other processors containing pieces of any of
those meshes.

6 23

Shield Module
Segment

Shield Module
) Segment

Shield Module
) Segment

Shield Module
Segment

First Wall
Panel Assembly

90,
754
Inter-Module —
Coaxial Flow g
Dividers First Wall & 594 LA
Panel Assembly =
(Shown Mounted) s p
ITER FW/Shield Heating [w!cm‘] for NWL=0.693 MW/m? g’ ' F-5
90 — - - — — - - =
Y “W FE %29 .
.75 : ?
£ 134,
w59
& g -1
™~ 3 9.9834
o 44 8.2947 L 245
S 6.6391 i
£ 29 49834 e
3 3.2947 \ s
Tx13 A ; G S R 4 A b 1.6391 45
@I Front Manifo ; . : = 4] 5 .l s azimuthal direction [degrees] 0.016556 05 Distance in radial direction [cm]

B

e

74 39 124
Distance in azimuthal direction at 11.5 cm from front of first wall [cm]

24.01.2011 P.Wilson: Fathom & Radiation Transport 244

Mid-plane nuclear heating Mid-plane T production
Source Input Table Var ALY TaG ,

500 600 700 800

F

I
i’
i
j.
-5
b]

. 8

Cross section He appm/FPY dpa/FPY

24.01.2011 P.Wilson: Fathom & Radiation Transport 255

Fission Applications
ATR National Science User Facility

AFIP Experiment In CFT

24.01.2011 P.Wilson: Fathom & Radiation Transport 265

RGG: Reactor Geometry (&mesh) Generator

Step 1: AssyGen

= RGG takes advantage of information about
repeated structures in both assembly and
core lattices.

= provides a balance between lattice-guided
automation and user interaction at key
points of the process.

= option to run serially and in parallel.

rectanciilar and hevaognal

" supports
lattices.

VHTR (325 pins, 40 seconds) and PWR (578 pins, 90
seconds) assemblies created using AssyGen tool.

! KEYWORD BASED ASSYGEN INPUT FILE
GeometryType Hexagonal

Materials 5 CR C Fuel F Dtl D1 Dt2 D2 Mat Ml
Duct 2 0.0 0.0 0.0 79.0 9.0 10.0 D1 D2
Pincells 3 1.87960

ControlRod CR 1

Cylinder 1 0.0 0.0 0.0 79.0 1.0 C
FuelCell 1 F2 1
Cylinder 1 0.0 0.0 0.0 79.0 0.5 F
FuelCell 2 F1 1
Cylinder 2 0.0 0.0 0.0 79.0 0.4 0.6 F Ml
Assembly 3
F2 F2 F2
F2 F1 F1 F2
F2 F1 CR F1 F2
F2 F1 F1 F2
F2 F2 F2

RadialMeshSize 0.15
Rotate 7 -30

%ﬁssyGen input file for creating assembly
geometry (right) and CUBIT mesh script.

27

s) SHARP Reactor IPSC « NEAMS Pl Meeting ¢ October 11, 2011 27

RGG: Automated 3-Stage Meshing Process

STAGE 1: ASSYGEN STAGE 2: MESHING STAGE 3: COREGEN
COREGEN INPUT FILE
INTERSTICES MESH
LMESH SCRIPT 1
ASSYGEN / 0% CUBIT/
INPUT *I ASSYGEN o095 MESHKIT
FILE1 O
COREGEN
Assembly
Geometry 1
MESH SCRIPT 2
ASSYGEN
INPUT [_ASSYGEN -)‘/‘ -)|
FILE2
Assembly
Geometry 2 Assembly Mesh 2

[1] T.J. Tautges and R. Jain (2011) “Creating geometry and mesh models for nuclear reactor core geometries using a lattice hierarchy-
based approach.” Engineering with Computers, 2011.

[2] RGG-MeshKit README, wiki website (2010)

http://trac.mcs.anl.qgov/projects/fathom/browser/MeshKit/trunk/rgg/README, http://trac.mcs.anl.gov/projects/fathom/wiki/rqq 28

a 28

RGG Application - MONJU
Parallel CoreGen

MONJU reactor, full core model: 9.7M hexes, 99k vols takes 4.3GB and 176 mins. 715 assemblies.

Parallel CoreGen Result: 101M hex in 90 seconds on 712 procs

29

; 29

Conclusions

Implementing things like geometry, mesh, relations in functionality-based
components gives you options on what to include in your application

CGM, MOAB, Lasso provide functionality for both mesh generation and analysis
support

All the components described here are open-source, most of them under an LGPL-
type open source license

http://sigma.mcs.anl.gov

moab-dev@mcs.anl.gov

30

Resolving Interface Mesh (Structured)

= For structured mesh, can compute shared vertex handles directly, with minimal
communication
— Given: global IJK parametric space, partitioning method
— Compute neighbors in +/- lJK directions
— Communicate starting vertex handle to neighbors
— For vertices on bdy, compute remote handles on all sharing procs using their start
handles & 3D to 1D indexing

= Reduces resolve times by more than 100

1 order of magnitude
. 0*\/‘\/\

— 150M vertex mesh on fusion

2
o
E
@ read-ucd
0.1 = resolve-ucd
¥V read-scd
#rresolve-scd
0.01
1 10 100 1000

procs

31

Test Problem Description

= Generate two sets of progressively finer hex, tet meshes from the same geometry
= Put test function (sum of 4 Gaussian distributions) on hex mesh, map to tet mesh

" Measure f(3) = Zf"' exp <_M)|g wi=(10 5 1 8)

2

i Wi
fi=(-1 3 =5 2)
0 0 0
S —5 =5 10

%“= 112 10 30
3 14 20

32

o
UFAL
ONRS

A

%y

e AAYZ

R
NN

Hex, Tet Mesh Examples

33

L2 norm of error

Solution Transfer: Accuracy Scaling

Mesh to mesh interpolation accuracy (linear hex to linear tet)

1 L ' ' ' T T T T

L?~h2 4+ h?

target

source

0.1 - _
fixed hgoyce +
h ~h X
Soyrce tari
(2 h 2 TR
0.01 L 1 L L L L 1 L L 1 I L L 1 I I 1
0.01 0.1 1
2
htarget

34

Common Geometry Module (CGM)

Library for query & modification of BREP CAD-based geometric models

Supports various modeling engines
— Open.CASCADE (open-source)
— ACIS (commercial)
— CUBIT-ACIS (available for research purposes)
= Designed to represent geometric models as they are represented in CUBIT

= Basic model import & query

— ACIS .sat, OCC .brep, STEP, IGES

— Query # vertices/edges/faces/volumes, edge/face closest pt, face normal, etc.
= Model construction

— 3D/2D primitives, spline fitting, etc.

— Booleans, transforms, sweeping, lofting, etc.

— Not a parametric modeler like e.g. SolidWorks
= Advanced features

— Facet-based modeling

— “Virtual” topology (small feature removal)

— Decomposition for (hex) meshing

35

Common Geometry Module (CGM)
Open.CASCADE (OCC) port

Previously, CGM only supported commercial modeling engines
— ACIS, SolidWorks, Pro/Engineer, Catia CAA
= Qver the past couple years, implemented CGM port to Open.CASCADE, the only
general-purpose, open-source geometric modeling engine
= Most CGM functionality supported
— Geometry construction, booleans, transforms
— Webcut, imprinting (useful for hex & multi-material meshing)
— Virtual topology
= Not supported:
— Regularize after unite
— Some history and undo operations recently added to CGM
— Somewhat slower than ACIS-based CGM

36

Common Geometry Module (CGM)
Open.CASCADE (OCC) port

= Mcnp2cad, an MCNP-CAD converter
— ~10 minutes generation time, 216 volumes

37

Lasso Relations Tool

For some applications, need to relate mesh to geometry
— Adaptive mesh refinement
— Smooth surface-based boundary conditions

Separation of geometry, mesh in independent components means we need a
higher-level component that depends on those

Lasso: tool for recovering, querying, setting geometry-mesh relations

Prerequisite for querying: restore geometry, mesh with enough information to
recover matching

Lasso matches:
— iGeom: Entity dimension — iMesh: EntitySet GEOM_DIMENSION tag value, and
— iGeom: Entity GLOBAL_ID tag value —iMesh: EntitySet GLOBAL _ID tag value

These matching criteria inherently implementation-dependent, though eventually
can hopefully specify generically in terms of ITAPS data model

Current implementation works with meshes generated by CUBIT, MeshKit

38

Using Components for Geometry, Mesh
Other Examples

Facet-based geometry/API (iGeom/MOAB) +
Decimation (MeshKit) + Paving (MeshKit/CUBIT)
True ice bed geometry & mesh, tangent field for BC evaluation

Facets from CAD (CGM/MOAB) +
Fast ray-tracing (MOAB) =
Fast embedded boundary meshing

a 39

Conclusions

= MOARB is a general library for representing structured, unstructured mesh &
associated data

= Efficient in memory and time
= Generic data model handles most types of simulation data & metadata
= Parallel support up to 64k procs so far (on BG/P)

40

FindConnect (C) Notes

e Typical inout list usage
X *list, int list_alloc =0, int list_size
Setting list_alloc to zero OR list = NULL indicates list is unallocated, so it will be allocated inside
iMesh_getEntities

. Addresses of these parameters passed into iMesh_getEntities
* Inout list declared inside 'for' loop
e Memory de-allocated inside loop

41

FindConnect (Fortran) Notes

Cray pointer usage
“pointer” (rpverts, rpoffsets, etc.) declared as type integer
e Careful —integer*8 or integer*4, 64- or 32-bit
“pointee” (verts, ioffsets, etc.) implicitly typed or declared explicitly
pointer statement equivalences pointer to start of pointee array
pointee un-allocated until explicitly allocated

Set allocated size (ents_alloc) to zero to force allocation in iMesh_getEntities; arguments
passed by reference by default, use %VAL extension to pass by value; pointers passed by
reference by default, like arrays

Allocated size set to zero to force re-allocation in every iteration of do loop
Use C-based free function to de-allocate memory

42

FindConnect Makefile

include S${IMESH DIR}/iMesh-Defs.inc

FindConnectC: FindConnectC.o
$(CC) S (CFLAGS) -o $@ FindConnectC.o ${IMESH LIBS}

FindConnectF: FindConnectF.o
$(FC) -o $@ FindConnectF.o ${IMESH LIBS}

.Cpp.oO:

${CXX} -c S{CXXFLAGS} S${IMESH INCLUDES} $<
.CC.O:

S{CC} -c ${CFLAGS} ${IMESH_INCLUDES} S<
FLoo:

${FC} -c S${FFLAGS} S${IMESH INCLUDES} $<

43

